سپس گزیده ای از ترجمه را بررسی کنید!
این مقاله کاربرد صحیح ماشینهای القایی را در مواردی که این ماشین ها با ولتاژ بالا و پایین نامتوازن تغذیه می شوند، بررسی می نماید. همچنین تفاوتهایی که بین تعاریف ولتاژ نامتوازن وجود دارد نیز در این مقاله مورد بررسی قرار گرفته است. راه کار اتخاذ شده، استفاده از کاهش نرخ توان NEMA برای ولتاژهای نامتوازن است که مبنایی برای در نظر گرفتن اثرات ولتاژهای بالا و پایین در محاسبات تلفات موتور می باشد.
مدار معادل، توالی منفی، توالی مثبت، منابع نامتعادل.
کاربرد صحیح موتورهای القایی در سیستم توان و در تامین نیازمندی های بار، موضوع علاقه مندیهای بسیاری بوده است [3]-[1]. بسیاری از موتورهای صنعتی در آمریکا برای کار با ولتاژ 460V طراحی شده اند در حالی که تاسیسات سیستم توزیع برای کار در ولتاژ 480 طراحی شده اند.
اصلی که در اینجا مطرح است این است که افت ولتاژ کابل این امکان را فراهم خواهد نمود که ولتاژ مناسب 460V در پایانه های (ترمینالهای) موتور به وجود آید. اندازه گیری ها نشان داده اندکه علی رغم افت ولتاژ کابل، ولتاژ موجود در ترمینال موتور در سیستم های صنعتی به میزان قابل ملاحظه ای بیشتر از 460V است. در حالی که هنگامی که در سیستم های صنعتی و یا تجاری ضعیف سیستم بار زیادی را تحمل می نماید میزان ولتاژ می تواند از ولتاژ نامی نیز کمتر شود.
در کنار مساله ولتاژ بالا و پایین که در سیستم های قدرت وجود دارد، بار هرگز به صورت کامل متعادل نخواهد بود. معمولا، سطوح عدم توازن به اندازه کافی کوچک می باشد به گونه ای که عملکرد موتور را چندان تحت تاثیر قرار نمی دهند. با این وجود مواردی پیش می آید که می بایست سطح عدم توازن جهت عملکرد صحیح ماشین مدنظر قرار داده شود. این مساله با استفاده از تعریف عدم توازن و توسط NEMA مد نظر قرار داده شده است. تعریف عدم توازن استفاده شده متفاوت با آن چیزی است که در مجامع قدرت استفاده می شود. به علاوه، عدم توازن فرض می نماید که مقدار متوسط ولتاژ 460V است در حالی که چنین مقداری به ندرت در عمل رخ می دهد.
در نهایت ترجمه را خریداری کنید!
دانلود ترجمه فارسی -- قیمت: 14500 تومانسپس گزیده ای از ترجمه را بررسی کنید!
مجموعه ای از تکنیک های توان پایین برای تشخیص طرح توان پایین در مبدل آنالوگ به دیجیتال (ADC) خط لوله مطرح شده است. این تکنیک ها شامل حذف S/H فعال، به اشتراک گذاری تقویت کننده عملیاتی (اوپامپ) بین چندین بیت در هر مرحله مجاور، تکنیک تقویت کننده توان پایین، بازدهی بالا، نوسان بالا می باشند. همچنین، توپولوژی نمونه برداری جدید برای به حداقل رسانی خطای دستگاه توسط انطباق ثابت زمانی بین دو مسیر سیگنال ورودی مطرح شده است. همه این مهارت ها توسط شبیه سازی در طرح ADC 40MHz 11-bit 1.8V در فرایند CMOS 0.18 µm با انتشار توان 21mW، نسبت سیگنال به نویز و اغتشاش (SNDR) به اندازه 65 دسی بل، تعداد موثر بیت (ENOB) 10.5-bit، محدوده داینامیک آزاد کاذب (SFDR) 78dB، اغتشاش هارمونیک کل (THD) -75.4-dB، نسبت سیگنال به نویز (SNR) 64.5 dB و رقم شایستگی (FOM) 0.18 pJ/step، بررسی می شوند.
مبدل آنالوگ به دیجیتال، ADC خط لوله ای، امپلی فایر با نوسان بالا، توان پایین، SHA پایین، خط لوله، به اشتراک گذاری تقویت کننده عملیاتی.
مبدل های آنالوگ به دیجیتال توان پایین (ADC) با وضوح 10-12 بیت و نرخ های نمونه برداری ده ها مگاهرتز به صورت یکی از مولفه های مهم در کاربردهای تجاری قابل حمل یا اجرا شده با باتری مانند ارتباطات داده ای و سیستم های پردازش سیگنال تصویر شناخته می شوند. اخیرا، تکنولوژی های توان پایین زیادی پیشنهاد می شوند و در طرح های متععد مورد بررسی قرار می گیرند. با این حال، معماری جاگذاری زمان براحتی توسط عدم انطباق های آفست (جبران) و بهره همانند خطاهای شکاف بین کانال های جاگذاری محدود می شود. کارایی معماری شبه دیفرانسیلی در مقایسه با معماری کاملا دیفرانسیلی، به ولتاژ حالت رایج، زیرلایه یا نویز منبع توان حساس می باشد.
در نهایت ترجمه را خریداری کنید!
دانلود ترجمه فارسی -- قیمت: 14500 تومانسپس گزیده ای از ترجمه را بررسی کنید!
در این مقاله بهینه سازی بهره وری یک ژنراتور همزمان با شار مغناطیسی ثابت و با سیم پیچهای متمرکز قطب با مشخصات 3.6kw/2000rpm و برای کاربردهای گرمایی و کاربردهای حوزه قدرت بررسی شده است. از آنجا که بهره وری سیستم دارای اهمیت می باشد لذا معیارهای خاصی به منظور کاهش تلفات در ماشین در نظر گرفته شده است. یک مطالعه نیز با استفاده از روش تحلیلی و روش المان محدود برای بررسی تاثیر مجموعه محدودی از پارامترهای هندسی بر روی بهره وری این نوع ماشینها انجام پذیرفته است. در مدل تحلیلی همانند مدل المان محدود، هندسه سه بعدی ذاتی شار محوری ماشین، بوسیله مدلهای چندگانه دو بعدی در شعاع های پیرامونی مختلف آن تخمین زده شده است. پس از آن، تاثیر وزن بر روی مقادیر بهینه پارامترهای هندسی و همچنین بر روی بهره وری، مد نظر قرار داده شده است و مشخص گردید که وزن می-تواند به میزان زیادی کاهش داده شود در حالی که تاثیر این کاهش وزن در کاهش بهره وری بسیار محدود خواهد بود. در نهایت نتیجه هر دو روش با اندازه گیری هایی بر روی یک الگو با یکدیگر مقایسه شده اند تا صحت آنها تخمین زده شود.
ماشین شار محوری، بهره وری، روش المان محدود، بهینه سازی، ژنراتور آهنربا-ثابت، انرژی تجدید پذیر
با توجه به گشتاور خروجی بالای ماشین همزمان مغناطیس ثابت با شار محوری که در سرعت پایین محقق می شود (AFPMSM)، لذا این ماشین برای کاربردهای موتورهای چرخشی[1] و کاربردهای راه اندازی مستقیم انرژی بادی[2] بسیار مناسب می باشد. AFPMSM ها دارای توپولوژی های متفاوتی می باشند که هر یک از آنها فواید و نقاط ضعف خاص خود را دارند. AFPMSM بحث شده در این مقاله یک نوع ماشین دو روتوری و تک استاتوری است که سیم پیچهای قطب متمرکز شده دارد[3] (شکل 1). سیم پیچهای متمرکز شده قطب ها نسبت به سیم پیچهای پراکنده قطب دارای ارجحیت می باشند چرا که ساخت آنها ساده تر بوده و سیم پیچهای آنها کوتاه می باشند. سیم پیچهای کوتاه امکان می دهند که تلفات توان در سیم پیچهای مسی کاهش یابد.
در نهایت ترجمه را خریداری کنید!
دانلود ترجمه فارسی -- قیمت: 16500 تومانسپس گزیده ای از ترجمه را بررسی کنید!
در این مقاله، بهینه سازی هندسی پیل های خورشیدی که به طور یکپارچه در ماژول های خورشیدی بصورت سریالی متصل شده، مجتمع شده اند، گزارش می شود. مبنی بر تعیین تجربی مقاومت های صفحات الکترود و کنتاکت های ادواری، مقاومت های سری کل هر پیل خورشیدی و ماژول های خورشیدی متصل شده از درون، محاسبه شده اند. با در نظر گرفتن چگالی تولید جریان نوری ثابت، ژول کلی تلفات توان نسبتا مقاومتی، بوسیله یک شبیه سازی خودسازگار بر اساس 1-دیود، تعیین شده است. این روش، بسته به سیستم مواد بکار رفته، اجازه بهینه سازی هندسی ماژول خورشیدی را می دهد. به عنوان مثال، ماژول های خورشیدی پلیمری مبنی بر الکتررودITO و الکترود-بدون-ITO، با در نظر گرفتن ابعاد ساختاری بهینه شده اند.
ماژول خورشیدی یکپارچه، هندسی، حوزه فعال، بهم پیوسته، شبیه سازی، معغادله دیود
بیشتر ماژول های خورشیدی پوسته نازک امروزی که از نیمه هادی ها ساخته شده اند، از یک الکترود رسانای نیمه شفاف ساخته شده با ناخالصی از نوع اکسیدهای فلزی، به نام اکسیدهای رسانای شفاف (TCOs)، ساخته شده اند. برای مثال، ماژول های خورشیدی یکپارچه مبنی بر سیلیکون بیشکل، بر روی الکترودهای با ناخالصی ایندیوم با اکسیدقلع (ITO) یا الکترودهای با ناخالصی الومینیوم با اکسید روی (Al: ZnO)، بر روی شیشه نشست می کند. اگرچه، یک اشکال اصلی این TCOها، مقاومت نسبتن زیاد صفحات است، که ویژگی های شفافیت و رسانایی همدیگر را خنثی می کنند. ازینرو، در کل، یک سازکاری میان افزودن ناخالصی و کلفتی لایه با در نظر گرفتن شفافیت، مورد نیاز می باشد. به سخنی دیگر، هدایت محدود شده الکترود، می تواند موجب تلفات مقاومتی سری زیادی شود که مستقیمن به جریان تولید شده نوری (جریانی که در اثر تابش نور جاری می شود) که از آن می گذرد بستگی دارد[2,3].
در نهایت ترجمه را خریداری کنید!
دانلود ترجمه فارسی -- قیمت: 19500 تومانسپس گزیده ای از ترجمه را بررسی کنید!
اثرات اندازه لیزر حلقه ای نیمه هادی بر قدرت قفل شدگی تزریق نوری در اینجا بحث شده است. به منظور مطالعه اثر پاسخ فرکانسی لیزر حلقه ای نیمه هادی قفل شده، در پیکربندی master-slave با بکاربری از مدولاسیون فاز لیزر مستر، نیز مورد بحث قرار گرفته است. در این ناحیه یک-سویه، در صورت استفاده از لیزرهای حلقه ای نیمه هادی با اندازه های کوچکتر، بازه قفل شدگی لیزر حلقه ای نیمه هادی گسترده تر می شود.
لیزر حلقه ای نیمه هادی، قفل شدگی تزریق نوری، افزایش پهنای باند، پایداری دوسویه.
طی دو دهه گذشته، کارهای تحقیقاتی زیادی برای توسعه مدولاتورهای نوری پرسرعت و دیودهای لیزری انجام شد، تا به نیازهای آینده برای سیستم های ارتباطی با نرخ داده های پرسرعت، پاسخگو باشند. پهنای باند مدولاسیون منبع لیزر، پرسشی مهم برای کاربردهای باندگسترده آینده مانند تلویزیون اینترنتی، انتقال ویدیو، و صدا توسط IP (انتقال صدا با استفاده از پروتوکل اینترنتی)، می باشد. این یک مساله کلیدی برای ظهور ارتباطات مبنی بر مدولاسیون پیچیده ای شده که هم دامنه و هم فاز را در (مدولاسیون دامنه تربیع)، با تشخیص منسجم درگیر کمی کند. بالاترین پهنای باند مدولاسیونی که تا به حال برای لیزر اجرا-آزاد گزارش شده است، 30 GHz است.
در نهایت ترجمه را خریداری کنید!
دانلود ترجمه فارسی -- قیمت: 11500 تومان